Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37886517

RESUMEN

Oral mucosal colonization by C. albicans (Ca) is benign in healthy people but progresses to deeper infection known as oropharyngeal candidiasis (OPC) that may become disseminated when combined with immunosuppression. Cortisone-induced immunosuppression is a well-known risk factor for OPC, however the mechanism by which it permits infection is poorly understood. Neutrophils are the primary early sentinels preventing invasive fungal growth, and here we identify that in vivo neutrophil functional complexes known as swarms are crucial for preventing Ca invasion which are disrupted by cortisone. Neutrophil swarm function required leukotriene B4 receptor 1 (BLT1) expression, and swarms were further characterized by peripheral association of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) showing that OPC recruits PMN-MDSCs to this site of infection. Furthermore, PMN-MDSCs associated with Ca hyphae had no direct antifungal effect but showed prolonged survival times and increased autophagy. Thus in vivo neutrophil swarms are complex structures with spatially associated PMN-MDSCs that likely contribute immunoregulatory functions to resolve OPC. These swarm structures have an important function in preventing deep invasion by Ca within the oral mucosa and represent a mechanism for increased disease severity under immune deficient clinical settings.

2.
Front Immunol ; 13: 912748, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844627

RESUMEN

Candida albicans Sap6, a secreted aspartyl protease (Sap), contributes to fungal virulence in oral candidiasis. Beside its protease activity, Sap6 contains RGD (RGDRGD) motif required for its binding to host integrins. Sap6 activates immune cells to induce proinflammatory cytokines, although its ability to interact and activate human oral epithelial cells (OECs) remain unknown. Addition of purified recombinant Sap6 (rSap6) to OECs resulted in production of IL-1ß and IL-8 cytokines similar to live hyphal C. albicans. OECs exposed to rSap6 showed phosphorylation of p38 and MKP1 and expression of c-Fos not found with C. albicans Δsap6, heat-inactivated Sap6, or rSap6ΔRGD . Heat inactivated rSap6 was able to induce IL-1ß but not IL-8 in OECs, while rSap6ΔRGD induced IL-8 but not IL-1ß suggesting parallel signaling pathways. C. albicans hyphae increased surface expression of Protease Activated Receptors PAR1, PAR2 and PAR3, while rSap6 increased PAR2 expression exclusively. Pretreatment of OECs with a PAR2 antagonist blocked rSap6-induced p38 MAPK signaling and IL-8 release, while rSap6ΔRGD had reduced MKP1 signaling and IL-1ß release independent from PAR2. OECs exposed to rSap6 exhibited loss of barrier function as measured by TEER and reduction in levels of E-cadherin and occludin junctional proteins that was prevented by pretreating OECs with a PAR2 antagonist. OECs treated with PAR2 antagonist also showed reduced rSap6-mediated invasion by C. albicans cells. Thus, Sap6 may initiate OEC responses mediated both through protease activation of PAR2 and by its RGD domain. This novel role of PAR2 suggests new drug targets to block C. albicans oral infection.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Candida albicans , Proteínas Fúngicas/metabolismo , Receptor PAR-2/metabolismo , Estomatitis/microbiología , Citocinas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inflamación , Receptores Proteinasa-Activados/metabolismo
3.
Pathogens ; 10(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34959564

RESUMEN

Candida albicans is maintained as a commensal by immune mechanisms at the oral epithelia. Oral antifungal peptide Histatin 5 (Hst 5) may function in innate immunity, but the specific role Hst 5 plays in C. albicans commensalism is unclear. Since Zn-binding potentiates the candidacidal activity of Hst 5, we hypothesized that Hst 5+Zn would elicit a unique fungal stress response to shape interactions between C. albicans and oral epithelial cells (OECs). We found that Hst 5+Zn but not Hst 5 alone resulted in the activation of cell wall integrity (CWI) signaling, and deletion mutants were then used to determine that CWI-mediated chitin synthesis was protective against killing. Using flow cytometry, we confirmed that Hst 5+Zn-treated cells had significantly elevated levels of cell-wall chitin, mannan and ß-1,3 glucan compared to Hst 5-treated cells. We then tested the activation of host signaling components involved in C. albicans cell-wall recognition. The immunoblot assay of C. albicans-exposed oral epithelial cells showed increased activation of EphA2 and NF-κB but not EGFR. Interestingly, C. albicans treated with Hst 5+Zn induced the global suppression of pro-inflammatory cytokine release from OECs, but an increase in negative regulator IL-10. Hst 5+Zn-treated cells were more adherent but ultimately less invasive to OECs than control cells, thus indicating lowered virulence. Therefore, Hst 5+Zn-treated C. albicans cells are discerned by epithelial monolayers, but are less virulent and promote anti-inflammatory signaling, suggesting that Hst 5+Zn in combination could play a role in regulating commensalism of oral C. albicans through cell wall reorganization.

5.
mSphere ; 5(4)2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32759336

RESUMEN

Phagocytic cells are crucial components of the innate immune system preventing Candida albicans mucosal infections. Streptococcus gordonii and Pseudomonas aeruginosa often colonize mucosal sites, along with C. albicans, and yet interkingdom interactions that might alter the survival and escape of fungi from macrophages are not understood. Murine macrophages were coinfected with S. gordonii or P. aeruginosa, along with C. albicans to evaluate changes in fungal survival. S. gordonii increased C. albicans survival and filamentation within macrophage phagosomes, while P. aeruginosa reduced fungal survival and filamentation. Coinfection with S. gordonii resulted in greater escape of C. albicans from macrophages and increased size of fungal microcolonies formed on macrophage monolayers, while coinfection with P. aeruginosa reduced macrophage escape and produced smaller microcolonies. Microcolonies formed in the presence of P. aeruginosa cells outside macrophages also had significantly reduced size that was not found with P. aeruginosa phenazine deletion mutants. S. gordonii cells, as well as S. gordonii heat-fixed culture supernatants, increased C. albicans microcolony biomass but also resulted in microcolony detachment. A heat-resistant, trypsin-sensitive pheromone processed by S. gordonii Eep was needed for these effects. The majority of fungal microcolonies formed on human epithelial monolayers with S. gordonii supernatants developed as large floating structures with no detectable invasion of epithelium, along with reduced gene expression of C. albicansHYR1, EAP1, and HWP2 adhesins. However, a subset of C. albicans microcolonies was smaller and had greater epithelial invasiveness compared to microcolonies grown without S. gordonii Thus, bacteria can alter the killing and escape of C. albicans from macrophages and contribute to changes in C. albicans pathogenicity.IMPORTANCECandida albicans is the predominant fungus colonizing the oral cavity that can have both synergistic and antagonistic interactions with other bacteria. Interkingdom polymicrobial associations modify fungal pathogenicity and are believed to increase microbial resistance to innate immunity. However, it is not known how these interactions alter fungal survival during phagocytic killing. We demonstrated that secreted molecules of S. gordonii and P. aeruginosa alter C. albicans survival within the phagosome of macrophages and alter fungal pathogenic phenotypes, including filamentation and microcolony formation. Moreover, we provide evidence for a dual interaction between S. gordonii and C. albicans such that S. gordonii signaling peptides can promote C. albicans commensalism by decreasing microcolony attachment while increasing invasion in epithelial cells. Our results identify bacterial diffusible factors as an attractive target to modify virulence of C. albicans in polymicrobial infections.


Asunto(s)
Bacterias/metabolismo , Candida albicans/fisiología , Hifa/crecimiento & desarrollo , Macrófagos/microbiología , Interacciones Microbianas , Fagosomas/microbiología , Animales , Bacterias/genética , Adhesión Bacteriana , Candida albicans/patogenicidad , Células Epiteliales/microbiología , Ratones , Boca/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Células RAW 264.7 , Streptococcus gordonii/genética , Streptococcus gordonii/fisiología , Virulencia
6.
J Fungi (Basel) ; 6(3)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751915

RESUMEN

Histatin 5 (Hst 5) is an antimicrobial peptide produced in human saliva with antifungal activity for opportunistic pathogen Candida albicans. Hst 5 binds to multiple cations including dimerization-inducing zinc (Zn2+), although the function of this capability is incompletely understood. Hst 5 is taken up by C. albicans and acts on intracellular targets under metal-free conditions; however, Zn2+ is abundant in saliva and may functionally affect Hst 5. We hypothesized that Zn2+ binding would induce membrane-disrupting pores through dimerization. Through the use of Hst 5 and two derivatives, P113 (AA 4-15 of Hst 5) and Hst 5ΔMB (AA 1-3 and 15-19 mutated to Glu), we determined that Zn2+ significantly increases killing activity of Hst 5 and P113 for both C. albicans and Candida glabrata. Cell association assays determined that Zn2+ did not impact initial surface binding by the peptides, but Zn2+ did decrease cell association due to active peptide uptake. ATP efflux assays with Zn2+ suggested rapid membrane permeabilization by Hst 5 and P113 and that Zn2+ affinity correlates to higher membrane disruption ability. High-performance liquid chromatography (HPLC) showed that the higher relative Zn2+ affinity of Hst 5 likely promotes dimerization. Together, these results suggest peptide assembly into fungicidal pore structures in the presence of Zn2+, representing a novel mechanism of action that has exciting potential to expand the list of Hst 5-susceptible pathogens.

7.
mSphere ; 5(4)2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641426

RESUMEN

Candida albicans is an opportunistic, dimorphic fungus that causes candidiasis in immunocompromised people. C. albicans forms specialized structures called microcolonies that are important for surface adhesion and virulence. Microcolonies form in response to specific environmental conditions and require glycolytic substrates for optimal growth. However, fungal signaling pathways involved in sensing and transmitting these environmental cues to induce microcolony formation have not been identified. Here, we show that the C. albicans Ras1-cAMP cascade is required for microcolony formation, while the Cek1-MAP kinase pathway is not required, and Hog1 represses microcolony formation. The membrane protein Sho1, known to regulate the Cek1 pathway in yeasts, was indispensable for C. albicans microcolony formation but regulated the Ras1-cAMP pathway instead, based upon diminished intracellular levels of cAMP and reduced expression of core microcolony genes, including HWP1, PGA10, and ECE1, in C. albicanssho1Δ cells. Based upon predicted physical interactions between Sho1 and the glycolytic enzymes Pfk1, Fba1, Pgk1, and Cdc19, we hypothesized that Sho1 regulates Ras1-cAMP by establishing cellular energy levels produced by glycolysis. Indeed, microcolony formation was restored in C. albicanssho1Δ cells by addition of exogenous intermediates of glycolysis, including downstream products of each predicted interacting enzyme (fructose 1,6 bisphosphate, glyceraldehyde phosphate, 3-phosphoglyceric acid, and pyruvate). Thus, C. albicans Sho1 is an upstream regulator of the Ras1-cAMP signaling pathway that connects glycolytic metabolism to the formation of pathogenic microcolonies.IMPORTANCEC. albicans microcolonies form extensive hyphal structures that enhance surface adherence and penetrate underlying tissues to promote fungal infections. This study examined the environmental conditions that promote microcolony formation and how these signals are relayed, in order to disrupt signaling and reduce pathogenesis. We found that a membrane-localized protein, Sho1, is an upstream regulator of glycolysis and required for Ras1-cAMP signaling. Sho1 controlled the Ras1-dependent expression of core microcolony genes involved in adhesion and virulence. This new regulatory function for Sho1 linking glycolysis to microcolony formation reveals a novel role for this fungal membrane protein.


Asunto(s)
Candida albicans/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Glucólisis , Proteínas de la Membrana/genética , Transducción de Señal/genética , Candida albicans/metabolismo , Candida albicans/patogenicidad , Candidiasis/microbiología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Hifa/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Virulencia
8.
NPJ Biofilms Microbiomes ; 5(1): 21, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31452924

RESUMEN

The opportunistic fungal pathogen Candida albicans is capable of adhering to the oral mucosa despite forces created by salivary flow. Although many fungal adhesion proteins have been identified, less is known about the temporal development of cell adhesion and biofilm growth in a flow environment. In this study, we use a flow system with real-time imaging of C. albicans cells as they adhere and grow. Rates of cell attachment and dispersion of C. albicans knockout strains of putative adhesins, transcription factors, and deletions with a hyperfilamentous phenotype were quantified during 18 h of biofilm development. Cell adhesion under flow is a multi-phase process initiated with cell rolling, then an initial firm attachment to the substrate occurs. After attachment, cells enter a growth phase where cells either commit to adherence or disperse. C. albicans Δeap1, Δhwp2, Δhyr1, and Δihd1 cells had significantly reduced initial attachment and subsequent adhesion, while Δals1/Δals3 had no change in initial attachment but reduced adhesion maintenance. WT cells had increased adhesion during the late growth phase when hyphae were more highly expressed. Hyperfilamentous strains had 10-fold higher total biofilm growth, a result of significantly reduced detachment rates, showing that hyphal morphogenesis is important for adhesion maintenance in the developing biofilm. The rate of C. albicans biomass dispersion was most important for determining the density of the mature biomass. Adhesion maintenance was mediated in part by Ywp1, a protein previously thought to regulate dispersion, thus it functions as an adhesion maintenance protein in C. albicans.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida albicans/crecimiento & desarrollo , Adhesión Celular , Proteínas Fúngicas/metabolismo , Candida albicans/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Expresión Génica , Microfluídica , Imagen Óptica
9.
Front Microbiol ; 10: 1188, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231324

RESUMEN

Non-albicans Candida species (NACS) are often isolated along with Candida albicans in cases of oropharyngeal candidiasis. C. albicans readily forms biofilms in conjunction with other oral microbiota including both bacteria and yeast. Adhesion between species is important to the establishment of these mixed biofilms, but interactions between C. albicans and many NACS are not well-characterized. We adapted a real-time flow biofilm model to study adhesion interactions and biofilm establishment in C. albicans and NACS in mono- and co-culture. Out of five NACS studied, only the filamenting species C. tropicalis and C. dubliniensis were capable of adhesion with C. albicans, while C. parapsilosis, C. lusitaniae, and C. krusei were not. Over the early phase (0-4 h) of biofilm development, both mono- and co-culture followed similar kinetics of attachment and detachment events, indicating that initial biofilm formation is not influenced by inter-species interactions. However, the NACS showed a preference for inter-species cell-cell interactions with C. albicans, and at later time points (5-11 h) we found that dual-species interactions impacted biofilm surface coverage. Dual-species biofilms of C. tropicalis and C. albicans grew more slowly than C. albicans alone, but achieved higher surface coverage than C. tropicalis alone. Biofilms of C. dubliniensis with C. albicans increased surface coverage more rapidly than either species alone. We conclude that dual culture biofilm of C. albicans with C. tropicalis or C. dubliniensis offers a growth advantage for both NACS. Furthermore, the growth and maintenance, but not initial establishment, of dual-species biofilms is likely facilitated by interspecies cell-cell adherence.

10.
mSphere ; 4(2)2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842272

RESUMEN

Many fungal species, including pathogens, undergo a morphogenetic response called filamentous growth, where cells differentiate into a specialized cell type to promote nutrient foraging and surface colonization. Despite the fact that filamentous growth is required for virulence in some plant and animal pathogens, certain aspects of this behavior remain poorly understood. By examining filamentous growth in the budding yeast Saccharomyces cerevisiae and the opportunistic pathogen Candida albicans, we identify responses where cells undergo filamentous growth in groups of cells or aggregates. In S. cerevisiae, aggregate invasive growth was regulated by signaling pathways that control normal filamentous growth. These pathways promoted aggregation in part by fostering aspects of microbial cooperation. For example, aggregate invasive growth required cellular contacts mediated by the flocculin Flo11p, which was produced at higher levels in aggregates than cells undergoing regular invasive growth. Aggregate invasive growth was also stimulated by secreted enzymes, like invertase, which produce metabolites that are shared among cells. Aggregate invasive growth was also induced by alcohols that promote density-dependent filamentous growth in yeast. Aggregate invasive growth also required highly polarized cell morphologies, which may affect the packing or organization of cells. A directed selection experiment for aggregating phenotypes uncovered roles for the fMAPK and RAS pathways, which indicates that these pathways play a general role in regulating aggregate-based responses in yeast. Our study extends the range of responses controlled by filamentation regulatory pathways and has implications in understanding aspects of fungal biology that may be relevant to fungal pathogenesis.IMPORTANCE Filamentous growth is a fungal morphogenetic response that is critical for virulence in some fungal species. Many aspects of filamentous growth remain poorly understood. We have identified an aspect of filamentous growth in the budding yeast Saccharomyces cerevisiae and the human pathogen Candida albicans where cells behave collectively to invade surfaces in aggregates. These responses may reflect an extension of normal filamentous growth, as they share the same signaling pathways and effector processes. Aggregate responses may involve cooperation among individual cells, because aggregation was stimulated by cell adhesion molecules, secreted enzymes, and diffusible molecules that promote quorum sensing. Our study may provide insights into the genetic basis of collective cellular responses in fungi. The study may have ramifications in fungal pathogenesis, in situations where collective responses occur to promote virulence.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Saccharomyces cerevisiae/crecimiento & desarrollo , Alcoholes/metabolismo , Candida albicans/genética , Polaridad Celular , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Saccharomyces cerevisiae/genética , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-30718249

RESUMEN

Candida albicans, the causative agent of mucosal infections, including oropharyngeal candidiasis (OPC), as well as bloodstream infections, is becoming increasingly resistant to existing treatment options. In the absence of novel drug candidates, drug repurposing aimed at using existing drugs to treat off-label diseases is a promising strategy. C. albicans requires environmental iron for survival and virulence, while host nutritional immunity deploys iron-binding proteins to sequester iron and reduce fungal growth. Here we evaluated the role of iron limitation using deferasirox (an FDA-approved iron chelator for the treatment of patients with iron overload) during murine OPC and assessed deferasirox-treated C. albicans for its interaction with human oral epithelial (OE) cells, neutrophils, and antimicrobial peptides. Therapeutic deferasirox treatment significantly reduced salivary iron levels, while a nonsignificant reduction in the fungal burden was observed. Preventive treatment that allowed for two additional days of drug administration in our murine model resulted in a significant reduction in the number of C. albicans CFU per gram of tongue tissue, a significant reduction in salivary iron levels, and significantly reduced neutrophil-mediated inflammation. C. albicans cells harvested from the tongues of animals undergoing preventive treatment had the differential expression of 106 genes, including those involved in iron metabolism, adhesion, and the response to host innate immunity. Moreover, deferasirox-treated C. albicans cells had a 2-fold reduction in survival in neutrophil phagosomes (with greater susceptibility to oxidative stress) and reduced adhesion to and invasion of OE cells in vitro Thus, deferasirox treatment has the potential to alleviate OPC by affecting C. albicans gene expression and reducing virulence.


Asunto(s)
Candida albicans/efectos de los fármacos , Candidiasis Bucal/tratamiento farmacológico , Deferasirox/farmacología , Células Epiteliales/microbiología , Quelantes del Hierro/farmacología , Mucosa Bucal/microbiología , Animales , Antifúngicos/farmacología , Candida albicans/patogenicidad , Candidiasis Bucal/microbiología , Candidiasis Bucal/patología , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Reposicionamiento de Medicamentos , Femenino , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Hierro/metabolismo , Ratones , Ratones Endogámicos C57BL , Mucosa Bucal/citología , Mucosa Bucal/patología , Neutrófilos/microbiología , Estrés Oxidativo/efectos de los fármacos , Saliva/química , Lengua/microbiología
12.
J Vis Exp ; (140)2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30394387

RESUMEN

In oropharyngeal candidiasis, members of the genus Candida must adhere to and grow on the oral mucosal surface while under the effects of salivary flow. While models for the growth under flow have been developed, many of these systems are expensive, or do not allow imaging while the cells are under flow. We have developed a novel apparatus that allows us to image the growth and development of Candida albicans cells under flow and in real-time. Here, we detail the protocol for the assembly and use of this flow apparatus, as well as the quantification of data that are generated. We are able to quantify the rates that the cells attach to and detach from the slide, as well as to determine a measure of the biomass on the slide over time. This system is both economical and versatile, working with many types of light microscopes, including inexpensive benchtop microscopes, and is capable of extended imaging times compared to other flow systems. Overall, this is a low-throughput system that can provide highly detailed real-time information on the biofilm growth of fungal species under flow.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida albicans/crecimiento & desarrollo , Hongos/crecimiento & desarrollo , Dispositivos Laboratorio en un Chip/microbiología , Humanos
13.
Infect Immun ; 86(12)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30249746

RESUMEN

Host phagocytic cells are crucial players in initial defense against Candida albicans infection. C. albicans utilizes MAP kinases and Ras1 stress response signaling pathways to protect itself from killing by immune cells. In this study, we tested the importance of these pathways in C. albicans phagocytosis by neutrophils and subsequent phagosomal survival. Phagocytosis was influenced by C. albicans morphology, so hyphal length of >10 µm reduced the phagocytic index (PI) 2- to 3-fold in human neutrophils. Primary human neutrophils killed 81% of phagocytosed C. albicans, while primary mouse neutrophils killed 63% of yeasts. We found that both the C. albicans Cek1 and Hog1 pathways were required for survival of phagocytosed yeast, whereas deletion of C. albicansRAS1 resulted in an 84% increase in survival within neutrophils compared to that of the wild type (WT). The absence of Ras1 did not alter reactive oxygen species (ROS) production by C. albicans; however, phagocytosed C. albicans Δ/Δras1 cells reduced ROS release by neutrophils by 86%. Moreover, C. albicans Δ/Δras1 cells had increased resistance to hydrogen peroxide as a result of high levels of catalase activity. This phenotype was specific to Ras1, since these effects were not observed in the absence of its partner Cyr1 or with its downstream target Efg1. In addition, C. albicans Δ/Δras1 cells had a significantly increased resistance to nonoxidative killing by human neutrophil peptide 1 (HNP-1) that was reversed by restoring cellular cAMP levels. These data show that C. albicans Ras1 inactivation leads to fungal resistance to both oxidative and nonoxidative mechanisms of neutrophil phagosomal killing.


Asunto(s)
Candida albicans , Proteínas Fúngicas/genética , Neutrófilos/inmunología , Fagosomas/inmunología , Proteínas ras/genética , Animales , Células Cultivadas , Femenino , Proteínas Fúngicas/inmunología , Silenciador del Gen , Interacciones Huésped-Patógeno/inmunología , Humanos , Hifa/inmunología , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , alfa-Defensinas/farmacología , Proteínas ras/inmunología
14.
PLoS Pathog ; 14(9): e1007316, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30252918

RESUMEN

Candida albicans is an opportunistic fungal pathogen that can infect oral mucosal surfaces while being under continuous flow from saliva. Under specific conditions, C. albicans will form microcolonies that more closely resemble the biofilms formed in vivo than standard in vitro biofilm models. However, very little is known about these microcolonies, particularly genomic differences between these specialized biofilm structures and the traditional in vitro biofilms. In this study, we used a novel flow system, in which C. albicans spontaneously forms microcolonies, to further characterize the architecture of fungal microcolonies and their genomics compared to non-microcolony conditions. Fungal microcolonies arose from radially branching filamentous hyphae that increasingly intertwined with one another to form extremely dense biofilms, and closely resembled the architecture of in vivo oropharyngeal candidiasis. We identified 20 core microcolony genes that were differentially regulated in flow-induced microcolonies using RNA-seq. These genes included HWP1, ECE1, IHD1, PLB1, HYR1, PGA10, and SAP5. A predictive algorithm was utilized to identify ten transcriptional regulators potentially involved in microcolony formation. Of these transcription factors, we found that Rob1, Ndt80, Sfl1 and Sfl2, played a key role in microcolony formation under both flow and static conditions and to epithelial surfaces. Expression of core microcolony genes were highly up-regulated in Δsfl1 cells and down-regulated in both Δsfl2 and Δrob1 strains. Microcolonies formed on oral epithelium using C. albicans Δsfl1, Δsfl2 and Δrob1 deletion strains all had altered adhesion, invasion and cytotoxicity. Furthermore, epithelial cells infected with deletion mutants had reduced (SFL2, NDT80, and ROB1) or enhanced (SFL2) immune responses, evidenced by phosphorylation of MKP1 and c-Fos activation, key signal transducers in the hyphal invasion response. This profile of microcolony transcriptional regulators more closely reflects Sfl1 and Sfl2 hyphal regulatory networks than static biofilm regulatory networks, suggesting that microcolonies are a specialized pathogenic form of biofilm.


Asunto(s)
Candida albicans/genética , Candida albicans/patogenicidad , Biopelículas/crecimiento & desarrollo , Candida albicans/crecimiento & desarrollo , Candidiasis Bucal/etiología , Candidiasis Bucal/microbiología , Línea Celular , Recuento de Colonia Microbiana , Proteínas Fúngicas/genética , Redes Reguladoras de Genes , Genoma Fúngico , Humanos , Hifa/genética , Hifa/crecimiento & desarrollo , Hifa/patogenicidad , Mutación , Infecciones Oportunistas/etiología , Infecciones Oportunistas/microbiología , Factores de Transcripción/genética , Virulencia/genética
15.
Microb Cell ; 5(7): 300-326, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29992128

RESUMEN

Unlike superficial fungal infections of the skin and nails, which are the most common fungal diseases in humans, invasive fungal infections carry high morbidity and mortality, particularly those associated with biofilm formation on indwelling medical devices. Therapeutic management of these complex diseases is often complicated by the rise in resistance to the commonly used antifungal agents. Therefore, the availability of accurate susceptibility testing methods for determining antifungal resistance, as well as discovery of novel antifungal and antibiofilm agents, are key priorities in medical mycology research. To direct advancements in this field, here we present an overview of the methods currently available for determining (i) the susceptibility or resistance of fungal isolates or biofilms to antifungal or antibiofilm compounds and compound combinations; (ii) the in vivo efficacy of antifungal and antibiofilm compounds and compound combinations; and (iii) the in vitro and in vivo performance of anti-infective coatings and materials to prevent fungal biofilm-based infections.

16.
J Oral Microbiol ; 10(1): 1447216, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29686781

RESUMEN

Background: Little is known about the normal range of metal levels in unstimulated saliva, nor whether these might impact Candida carriage in healthy individuals. Both are important in determining which populations are at risk for candidiasis, as the availability of metal ions can influence the growth and pathogenesis of Candida albicans. Objective: We quantified salivary metals of healthy individuals to determine the correlation with C. albicans oral colonization. Design: Unstimulated whole saliva was collected from healthy adults and plated to determine fungal carriage, and metal content was measured using ICP-mass spectrometry (ICP-MS). Results: Zinc was most abundant, followed by iron, copper, manganese, and nickel. Cultivable oral Candida carriage was found in 48% of people. Total protein levels did not differ in salivas from donors with or without carriage. However, innate fungicidal activity was increased in donors with carriage; correlations between levels of several metals were stronger in salivas with fungal carriage, indicating a shift in the oral environment. Concentrations of copper and manganese, as well as age and gender, were significantly predictive of carriage levels in a multiple regression model. Conclusions: Salivary copper and manganese content along with age and gender could be used as a predictive metric for individuals that are more susceptible to Candida overgrowth.

17.
Artículo en Inglés | MEDLINE | ID: mdl-29158282

RESUMEN

Candida auris is a newly identified species causing invasive candidemia and candidiasis. It has broad multidrug resistance (MDR) not observed for other pathogenic Candida species. Histatin 5 (Hst 5) is a well-studied salivary cationic peptide with significant antifungal activity against Candida albicans and is an attractive candidate for treating MDR fungi, since antimicrobial peptides induce minimal drug resistance. We investigated the susceptibility of C. auris to Hst 5 and neutrophils, two first-line innate defenses in the human host. The majority of C. auris clinical isolates, including fluconazole-resistant strains, were highly sensitive to Hst 5: 55 to 90% of cells were killed by use of 7.5 µM Hst 5. Hst 5 was translocated to the cytosol and vacuole in C. auris cells; such translocation is required for the killing of C. albicans by Hst 5. The inverse relationship between fluconazole resistance and Hst 5 killing suggests different cellular targets for Hst 5 than for fluconazole. C. auris showed higher tolerance to oxidative stress than C. albicans, and higher survival within neutrophils, which correlated with resistance to oxidative stress in vitro Thus, resistance to reactive oxygen species (ROS) is likely one, though not the only, important factor in the killing of C. auris by neutrophils. Hst 5 has broad and potent candidacidal activity, enabling it to combat MDR C. auris strains effectively.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Fluconazol/farmacología , Histatinas/farmacología , Candida/metabolismo , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Candidiasis/microbiología , Proteínas Fúngicas/metabolismo , Humanos , Péptidos/metabolismo , Vacuolas/efectos de los fármacos
18.
PLoS Pathog ; 13(9): e1006655, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28953977

RESUMEN

The opportunistic fungal pathogen Candida albicans frequently produces genetically altered variants to adapt to environmental changes and new host niches in the course of its life-long association with the human host. Gain-of-function mutations in zinc cluster transcription factors, which result in the constitutive upregulation of their target genes, are a common cause of acquired resistance to the widely used antifungal drug fluconazole, especially during long-term therapy of oropharyngeal candidiasis. In this study, we investigated if C. albicans also can develop resistance to the antimicrobial peptide histatin 5, which is secreted in the saliva of humans to protect the oral mucosa from pathogenic microbes. As histatin 5 has been shown to be transported out of C. albicans cells by the Flu1 efflux pump, we screened a library of C. albicans strains that contain artificially activated forms of all zinc cluster transcription factors of this fungus for increased FLU1 expression. We found that a hyperactive Mrr1, which confers fluconazole resistance by upregulating the multidrug efflux pump MDR1 and other genes, also causes FLU1 overexpression. Similarly to the artificially activated Mrr1, naturally occurring gain-of-function mutations in this transcription factor also caused FLU1 upregulation and increased histatin 5 resistance. Surprisingly, however, Mrr1-mediated histatin 5 resistance was mainly caused by the upregulation of MDR1 instead of FLU1, revealing a previously unrecognized function of the Mdr1 efflux pump. Fluconazole-resistant clinical C. albicans isolates with different Mrr1 gain-of-function mutations were less efficiently killed by histatin 5, and this phenotype was reverted when MRR1 was deleted. Therefore, antimycotic therapy can promote the evolution of strains that, as a consequence of drug resistance mutations, simultaneously have acquired increased resistance against an innate host defense mechanism and are thereby better adapted to certain host niches.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Humanos , Mutación/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
19.
Sci Rep ; 7(1): 2908, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28588252

RESUMEN

Candida albicans is an opportunistic fungal pathogen colonizing the oral cavity. C. albicans secreted aspartic protease Sap6 is important for virulence during oral candidiasis since it degrades host tissues to release nutrients and essential transition metals. We found that zinc specifically increased C. albicans autoaggregation induced by Sap6; and that Sap6 itself bound zinc ions. In silico analysis of Sap6 predicted four amyloidogenic regions that were synthesized as peptides (P1-P4). All peptides, as well as full length Sap6, demonstrated amyloid properties, and addition of zinc further increased amyloid formation. Disruption of amyloid regions by Congo red significantly reduced auotoaggregation. Deletion of C. albicans genes that control zinc acquisition in the ZAP1 regulon, including zinc transporters (Pra1 and Zrt1) and other zinc-regulated surface proteins, resulted in lower autoaggregation and reduction of surface binding of Sap6. Cells with high expression of PRA1 and ZRT1 also showed increased Sap6-mediated autoaggregation. C. albicans ∆sap6 deletion mutants failed to accumulate intracellular zinc comparable to ∆zap1, ∆zrt1, and ∆pra1 cells. Thus Sap6 is a multi-functional molecule containing amyloid regions that promotes autoaggregation and zinc uptake, and may serve as an additional system for the community acquisition of zinc.


Asunto(s)
Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Agregación Celular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Zinc/metabolismo , Proteínas Amiloidogénicas/química , Ácido Aspártico Endopeptidasas/química , Proteínas Portadoras , Espacio Extracelular/metabolismo , Proteínas Fúngicas/química , Regulación de la Expresión Génica , Modelos Moleculares , Agregado de Proteínas , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas
20.
J Chem Inf Model ; 57(6): 1330-1341, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28586222

RESUMEN

Histatin 5 (Hst5) is a naturally occurring antimicrobial peptide that acts as the first line of defense against oral candidiasis. It has been shown that conjugation of the active Hst5 fragment, Hst54-15, and the polyamine spermidine (Spd) improves the candidacidal effect. Knowledge about the structure of these conjugates is, however, very limited. Thus, the aim of this study was to characterize the structural properties of the Hst54-15-Spd conjugates by performing atomistic molecular dynamics simulations in combination with small-angle X-ray scattering. It was shown that the Hst54-15-Spd conjugates adopt extended and slightly rigid random coil conformations without any secondary structure in aqueous solution. It is hypothesized that the increased fungal killing potential of Hst54-15-Spd, in comparison with the Spd-Hst54-15 conjugate, is due to the more extended conformations of the former, which cause the bonded Spd molecule to be more accessible for recognition by polyamine transporters in the cell.


Asunto(s)
Histatinas/química , Simulación de Dinámica Molecular , Espermidina/química , Conformación Molecular , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...